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Abstract

These notes are intended as an addition to the lectures given in class. They are NOT designed

to replace the actual lectures. Some of the notes will contain less information then in the actual

lecture, and some will have extra info. Not all formulas which will be needed for exams are

contained in these notes. Also, these notes will NOT contain any up to date organizational or

administrative information (changes in schedule, assignments, etc.) but only physics. If you notice

any typos - let me know at vitaly@njit.edu. For convenience, I will keep all notes in a single file -

each time you can print out only the added part. Make sure the file is indeed updated, there is a

date indicating the latest modification. There is also a Table of Contents, which is automatically

updated. For convenience, the file with notes will be both in postscript and pdf formats. A few

other things:

Graphics: Some of the graphics is deliberately unfinished, so that we have what to do in class.

Advanced topics: these will not be represented on the exams. Read them only if you are really

interested in the material.

Computer: Mostly, the use of a computer will not be required in the lecture part of this course.

If I need it (e.g., for graphics), I will use Mathematica. You do not have to know this program, but

if you are interested I will be glad to explain how it works.
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Dr. Vitaly A. Shneidman, Phys 111, 1st Lecture

I. INTRODUCTION

A. Physics and other sciences

in class

B. Point mass

The art physics is the art of idealization. One of the central concepts in mechanics is a

”particle” or ”point mass”

i.e. a body the size or structure of which are irrelevant in a given problem. Examples:

electron, planet, etc.

C. Units

1. Standard units

In SI system the basic units are:

m (meter), kg (kilogram) and s (second)

Everything else in mechanics is derived. Examples of derived units (may or may not have a

special name):

m/s, m/s2 (no name), kg · m/s2 (Newton), kg · m2/s2 (Joule), etc.

2. Conversion of units

Standard path: all units are converted to SI. E.g., length:

1 in = 0.0254 m , 1 ft = 0.3048 m , 1 mi ≃ 1609 m
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Examples:

70
mi

h
= 70

1609 m

3600 s
≃ 31.3

m

s

3 cm2 = 3
(

10−2 m
)2

= 3 10−4 m2

D. Units and dimensional analysis

Verification of units is useful to check the math. More interesting, however, is the pos-

sibility to get some insight into a new problem before math is done, or before it is even

possible. E.g., suppose we do not know the formula for displacement in accelerated motion

with v0 = 0. Let us guess, having at our disposal only the mass m, [kg], acceleration a, [m/s2]

and time t, [s]. Since all functions exp, sin, etc. can have only a dimensionless argument,

sin t − wrong!

sin
t

T
− correct

Look for a power law

x ∼ aαtβmγ or [m] = [m/s2]α[s]β[kg]γ

To get correct dimensions,

α = 1 , β = 2 , γ = 0

(cannot get the coefficient, which is 1/2 but otherwise ok). Important: not too many

variables, otherwise could have multiple solutions, which is as good as none: e.g., if v0 6= 0

is present can construct a dimensionless at/v0 and any function can be expected.

Advanced. Less trivial example: gravitational waves. What is the speed? Can depend on

g, [m/s2] on λ, [m] and on ρ, [kg/m3]

v ∼ gαλβργ or [m/s] = [m/s2]α[m]β[kg/m3]γ

From dimensions,

α = β = 1/2 , γ = 0(!)
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v ∼
√

gλ

What is neglected? Depth of the ocean, H. Thus,

vmax ∼
√

gH ∼
√

10 · 4 · 103 ∼ 200 m/s

(the longest and fastest gravitational wave is tsunami). Note that we know very little about

the precise physics, and especially the precise math of the wave, but from dimensional

analysis could get a reasonable estimation.

Problems.

Galileo discovered that the period of small oscillations of a pendulum is independent of its ampli-

tude. Use this to find the dependence of the period T on the length of the pendulum l, gravitational

acceleration g and, possibly, mass m. Namely, look for

T ∼ lαgβmγ

and find α, β and γ.

The force created by a string stretched by x meters is given by F = −kx (”Hook’s law”) where

the spring constant k is measured in N/m and N = kg ·m/s2. Find the dependence of the period of

oscillations T of a body of mass m attached to this spring on the values of k, m and the amplitude

A.

II. VECTORS

A vector is characterized by the following three properties:

• has a magnitude

• has direction (Equivalently, has several components in a selected system of coordi-

nates).

• obeys certain addition rules (”rule of parallelogram”). (Equivalently, components of

a vector are transformed according to certain rules if the system of coordinates is

rotated).

This is in contrast to a scalar, which has only magnitude and which is not changed when a

system of coordinates is rotated.
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How do we know which physical quantity is a vector, which is a scalar and which is

neither? From experiment (of course). Examples of scalars are mass, time, kinetic energy.

Examples of vectors are the displacement, velocity and force.

1. Single vector

a

Θ

ax

ay

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Consider a vector ~a with components ax and ay (let’s talk 2D for a while). There is an

associated scalar, namely the magnitude (or length) given by the Pythagorean theorem

a ≡ |~a| =
√

a2
x + a2

y (1)

Note that for a different system of coordinates with axes x′, y′ the components ax′ and ay′

can be very different, but the length in eq. (1) , obviously, will not change, which just means

that it is a scalar.

Primary example: position vector (note two equivalent forms of notation)

~r = (x, y) = x~i + y~j

with |~i| = |~j| = 1.

Polar coordinates:

r =
√

x2 + y2 , θ = arctan(y/x)

x = r cos θ , y = r sin θ

Note: arctan might require adding 180o - always check with a picture!
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Another operation allowed on a single vector is multiplication by a scalar. Note that the

physical dimension (”units”) of the resulting vector can be different from the original, as in

~F = m~a.

2. Two vectors: addition

-2 -1.5 -1 -0.5 0.5 1

0.5

1

1.5

2

2.5

3

~A

~B

~C

FIG. 1: Adding two vectors: ~C = ~A+ ~B. Note the use of rule of parallelogram (equivalently, tail-to-

head addition rule). Alternatively, vectors can be added by components: ~A = (−2, 1), ~B = (1, 2)

and ~C = (−2 + 1, 1 + 2) = (−1, 3).

For two vectors, ~a and ~b one can define their sum ~c = ~a +~b with components

cx = ax + bx , cy = ay + by (2)

The magnitude of ~c then follows from eq. (1). Note that physical dimensions of ~a and ~b

must be identical.

Note: for most problems (except rotation!) it is allowed to carry a vector parallel to

itself. Thus, we usually assume that every vector starts at the origin, (0, 0).
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3. Two vectors: dot product

If ~a and ~b make an angle φ with each other, their scalar (dot) product is defined as

~a ·~b = ab cos (φ), or in components

~a ·~b = axbx + ayby (3)

A different system of coordinates can be used, with different individual components but

with the same result. For two orthogonal vectors ~a ·~b = 0. Preview. The main application

of the scalar product is the concept of work ∆W = ~F ·∆~r, with ∆~r being the displacement.

Force which is perpendicular to displacement does not work!

Example Find angle between 2 vectors.

cos θ =
~a ·~b
ab

Example: Prove the Pythagorean theorem C2 = A2 + B2. Proof. Let ~A, ~B represent the

legs of a right triangle and ~C the hypotenuse - see Fig. 2.

~A

~B

~C

FIG. 2:

One has

~C = ~B − ~A

or

C2 = B2 + A2 − 2 ~B · ~A = A2 + B2
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since ~B · ~A = 0 for perpendicular vectors.

Example. The cosine theorem. The same thing, only now ~B · ~A 6= 0:

C2 = B2 + A2 − 2 ~B · ~A = A2 + B2 − 2AB cos θ

θ being the angle between ~A and ~B.

4. Two vectors: vector product

At this point we must proceed to the 3D space. Important here is the correct system of

coordinates, as in Fig. 3. You can rotate the system of coordinates any way you like, but

you cannot reflect it in a mirror (which would switch right and left hands). If ~a and ~b make

x

y

z

x

y x

y

z

FIG. 3: The correct, ”right-hand” systems of coordinates. Checkpoint - curl fingers of the RIGHT

hand from x (red) to y (green), then the thumb should point into the z direction (blue). (Note

that axes labeling of the figures is outside of the boxes, not necessarily near the corresponding axis;

also, for the figure on the right the origin of coordinates is at the far end of the box, if it is hard

to see in your printout).

an angle φ ≤ 180o with each other, their vector (cross) product ~c = ~a ×~b has a magnitude

c = ab sin(φ). The direction is defined as perpendicular to both ~a and ~b using the following

rule: curl the fingers of the right hand from ~a to ~b in the shortest direction (i.e., the angle

must be smaller than 180o). Then the thumb points in the ~c direction. Check with Fig. 4.

Changing the order changes the sign, ~b × ~a = −~a ×~b. In particular, ~a × ~a = ~0. More

generally, the cross product is zero for any two parallel vectors.

Suppose now a system of coordinates is introduced with unit vectors î, ĵ and k̂ pointing

in the x, y and z directions, respectively. First of all, if î, ĵ, k̂ are written ”in a ring”, the
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FIG. 4: Example of a cross product ~c (blue) = ~a (red) × ~b (green). (If you have no colors, ~c is

vertical in the example, ~a is along the front edge to lower right, ~b is diagonal).

cross product of any two of them equals the third one in clockwise direction, i.e. î × ĵ = k̂,

ĵ × k̂ = î, etc. (check this for Fig. 3 !). More generally, the cross product is now expressed

as a 3-by-3 determinant

~a ×~b =

∣

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂

ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

∣

∣

∣

= î

∣

∣

∣

∣

∣

∣

ay az

by bz

∣

∣

∣

∣

∣

∣

− ĵ

∣

∣

∣

∣

∣

∣

ax az

bx bz

∣

∣

∣

∣

∣

∣

+ k̂

∣

∣

∣

∣

∣

∣

ax ay

bx by

∣

∣

∣

∣

∣

∣

(4)

The two-by-two determinants can be easily expanded. In practice, there will be many zeroes,

so calculations are not too hard.

Preview. Vector product is most relevant to rotation.
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Dr. Vitaly A. Shneidman, Phys 111, 2nd Lecture

III. 1-DIMENSIONAL MOTION

A. v = const

See fig. 5

0.5 1 1.5 2
t

-1.5

-1

-0.5

0.5

1

1.5

2

2.5
v

0.5 1 1.5 2
t

-2

-1

1

2

3

4

5

x

FIG. 5: Velocity (left) and position (right) plots for motion with constant velocity: Positive (red)

or negative (blue). Note that area under the velocity line (positive or negative) corresponds to the

change in position: E.g. (red) 2 × 2 = 4.5 − 0.5, or (blue) 2 × (−1) = −2 − 0.

Displacement

∆x = v ∆t (5)

Distance

D = |∆x| (6)

Speed

s = D/∆t = |v| (7)
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Example (trap!):

S1 = 2 km/h; , S2 = 4 km/h . Sa − ?

D = 2AB , t1 = AB/S1 , t2 = AB/S2

Sa =
D

t1 + t2
=

2AB

AB/S1 + AB/S2
=

2S1S2

S1 + S2
6= 3 km/h

B. v 6= const

1 2 3 4 5 6
t

5

10

15

20

25
x

FIG. 6: A sample position vs. time plot (blue curve), and determination of the average velocities

- slopes (positive or negative) of straight solid lines. Slope of dashed line (which is tangent to x(t)

curve) is the instantaneouus velocity at t = 2 .

For explicit x(t) plots for v 6= const see fig. 8.

Average velocity:

vav =
∆x

∆t
(8)
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0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
v

0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
v

FIG. 7: Determination of displacement for a variable v(t). During the ith small interval of duration

∆t the velocity is replaced by a constant vi shown by a horizontal red segment. Corresponding

displacement is ∆xi ≈ vi · ∆t (the red rectangular box). The total displacement ∆x =
∑

∆xi

is then approximated by the area under the v(t) curve. The error - the total area of the small

triangles becomes small for small ∆t (compare left and right figures) and vanishes in the strict

limit ∆t → 0, when the sum becomes an integral.

0.5 1 1.5 2
t

-2

-1

1

2

3

v

0.5 1 1.5 2
t

-2

-1

1

2

3

4

x

FIG. 8: Velocity (left) and position (right) plots for motion with constant acceleration: Positive

(red) or negative (blue). Again, area under the velocity line (positive or negative) corresponds to

the change in position. E.g. (red) (2.5 + 0.5) × 2/2 = 4 − 1 or (blue) (−2) × 2/2 = −2 − 0.

Average speed

sav =
D

∆t
≥ |vav| (9)

Distance:

D ≥ |∆x| (10)
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Instantaneous velocity

v = lim
∆t→0

vav =
dx

dt
(11)

Displacement ∆x - area under the v(t) curve or Advanced

∆x(t) =

∫ t

t1

v (t′) dt′

Acceleration

aav =
∆v

∆t
(12)

a = lim
∆t→0

aav =
dv

dt
=

d2x

dt2
(13)

C. a = const

Notations: Start from t = 0, thus ∆t = t; v(0) ≡ v0.

∆v = at (14)

or

v = v0 + at

Displacement - area of the trapezoid in fig. 8 (can be negative!):

∆x =
v0 + v

2
t = v0t + at2/2 (15)
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A useful alternative: use t = (v − v0) /a:

∆x =
v0 + v

2

v − v0

a
=

v2 − v2
0

2a
(16)

(A more elegant derivation follows from conservation of energy,... later)

SUMMARY: if

a = const (17)

v = v0 + at (18)

x = x0 + v0t +
1

2
at2 (19)

x − x0 =
v0 + v

2
t =

v2 − v2
0

2a
(20)

Examples: meeting problems (car VC = 40 m/s, aC = 0 and motorcycle VM = 0, aM =

2 m/s2)

XC = VCt , XM =
1

2
aM t2

VCt =
1

2
aM t2 , t = 2VC/aM = 40 s , Xmeet = t · VC = 1600 s =

1

2
aM t2

14



D. Free fall
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Reminder: if

a = const (21)

v = v0 + at (22)

x = x0 + v0t +
1

2
at2 (23)

x − x0 =
v0 + v

2
t =

v2 − v2
0

2a
(24)

Free fall:

a → −g , x → y , x0 → y0 (or, H)

a = −g = −9.8 m/s2 (25)

v = v0 − gt (26)

y = y0 + v0t −
1

2
gt2 (27)

y − y0 =
v2

0 − v2

2g
(28)

Example: max height:

v = 0 , ymax − y0 = v2
0/2g (29)

Example: the Tower of Piza (v0 = 0 , y0 = H ≃ 55 m).

0 = H + 0t − gt2/2 , t =

√

2H

g

0 − H = −v2/2g , v =
√

2gH

Advanced. Exact evaluation of partial sums in a specific example.

Consider fig.7. Let v = at. Break the time t into N intervals with ∆t = t/N being the

horizontal size of each rectangle. Then, number each rectangle by i, with 0 ≤ i ≤ N − 1.
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The vertical size of a rectangle is then i
N

at, so that the total area covered by all rectangles

is
N−1
∑

i=0

at
i

N
∆t = at

∆t

N

N−1
∑

i=0

i =

= at
∆t

N

N(N − 1)

2
=

at2

2

(

1 − 1

N

)

The 1/N term (area of the triangles in fig.7) indeed vanishes as N → ∞.
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Dr. Vitaly A. Shneidman, Phys 111, 3rd Lecture

IV. 2D MOTION

A. Introduction: Derivatives of a vector

~r(t) = (x(t) , y(t)) = x(t)~i + y(t)~j (30)

d

dt
~r =

(

dx

dt
,

dy

dt

)

=
dx

dt
~i +

dy

dt
~j (31)

d2

dt2
~r =

(

d2x

dt2
,

d2y

dt2

)

=
d2x

dt2
~i +

d2y

dt2
~j (32)

B. General

Position:

~r = ~r(t) (33)

Average velocity:

~vav =
∆~r

∆t
(34)

(see Fig. 9).

Instantaneous velocity:

~v = lim
∆t→0

~vav =
d~r

dt
(35)

Average acceleration:

~aav =
∆~v

∆t
(36)
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Instantaneous acceleration:

~a = lim
∆t→0

~aav =
d~v

dt
=

d2~r

dt2
(37)

10 20 30 40 50 60 70 80
x

30

40

50

60

70

80

90

100
y

FIG. 9: Position of a particle ~r(t) (blue line), finite displacement ∆~r (black dashed line) and the

average velocity ~v = ∆~r/∆t (red dashed in the same direction). The the instantaneous velocity at

a given point is tangent to the trajectory.

C. ~a = const

∆~v = ~a · ∆t

or with t0 = 0

~v = ~v 0 + ~a · t (38)
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Displacement:

~r = ~r0 + ~v0 · t +
1

2
~a · t2 (39)

(The above can be proven either by integration or by writing eq. (38) in components and

using known 1D results).

D. ~a = ~g (projectile motion)

1. Introduction: Object from a plane

Given: H, V (horizontal). Find: L, v upon impact.

Distance. From y-direction

t =
√

2H/g

From x-direction

L = V t = . . .

Speed upon impact. From y-direction

v2

y = v2

0y + 2gH

From x-direction

vx = const = V

v2 = v2

x + v2

y = v2

x + v2

0y + 2gH = v2

0
+ 2gH
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Angle of impact with horizontal:

tan θ = vy/vx = −
√

2gH/V

General: Select x-axis horizontal, y-axis vertical.

ax = 0 , ay = −g (40)

From eq. (38) written in components one has

vx = v0,x = const , vy = v0,y − gt (41)

with

v0,x = v0 cos θ , v0,y = v0 sin θ (42)

Displacement:

x = x0 + v0,xt (43)

y = y0 + v0,yt −
1

2
gt2 (44)

Note:

ymax − y0 =
v2

0,y

2g
(45)

xmax =
v0,xv0,y

g
(46)

Range:

R = 2xmax =
v2

0

g
sin (2θ) (47)

Note maximum for θ = π/4.
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2 4 6 8 10
x

1

2

3

4

5

y

FIG. 10: Projectile motion for different values of the initial angle θ with a fixed value of initial

speed v0 (close to 10 m/s). Maximum range is achieved for θ = π/4.

Trajectory: (use x0 = y0 = 0). Exclude time, e.g. t = x/v0,x. Then

y = x
v0,y

v0,x
− 1

2
g

x2

v2
0,x

= x tan θ − g

2v2
0 cos2 θ

x2 (48)

This is a parabola - see Fig. 10.

Problem. A coastguard cannon is placed on a cliff y0 = 60 m above the sea level. A

shell is fired at an angle θ = 30o above horizontal with initial speed v0 = 80 m/s. Find the

following:

1. the horizontal distance x from the cliff to the point where the projectile hits the water

2. the speed upon impact

Solution:

vx = v0 cos θ , v0y = v0 sin θ

Note y = 0 at the end. Find time from vertical motion only

0 = y0 + v0yt −
1

2
gt2

(a quadratic equation - select a positive root). Then, the horizontal distance

x = vxt

Speed upon impact (just as for the plane)

v =
√

v2
0 + 2gy0 > v0

Angle θ does not affect the final speed.
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E. Uniform circular motion

1. Preliminaries

Consider motion sround a circle with a constant speed v. The velocity ~v, however, changes

directions so that there is acceleration.

Period of revolution:

T = 2πr/v (49)

with 1/T - ”frequency of revolution”. Angular velocity (in rad/s):

ω = 2π/T = v/r (50)

2. Acceleration

Note that ~v is always perpendicular to ~r. Thus, from geometry vectors ~v (t + ∆t) , ~v(t)

and ∆~v form a triangle which is similar to the one formed by ~r (t + ∆t) , ~r(t) and ∆~r. Or,

|∆~v|
v

=
|∆~r|

r

a = lim
∆t→0

|∆~v|
∆t

=
v

r
lim

∆t→0

|∆~r|
∆t
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Or

a = v2/r = ω2r (51)

3. An alternative derivation

We can use derivatives with the major relation

d

dt
sin(ωt) = ω cos(ωt) ,

d

dt
cos(ωt) = −ω sin(ωt) , (52)

One has

~r(t) = (x, y) = (r cos ωt, r sin ωt)

~v(t) =
d~r

dt
= (−rω sin ωt, rω cos ωt)

~a =
d~v

dt
=

(

−rω2 cos ωt, −rω2 sin ωt
)

= −ω2~r (53)

which gives not only magnitude but also the direction of acceleration opposite to ~r, i.e.

towards the center.

FIG. 11: Position (black), velocities (blue) and acceleration (red) vectors for a uniform circular

motion in counter-clockwise direction.
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F. Advanced: Classical (Galileo’s) Relativity

New reference frame:

~R = ~R0 + ~V t , ~V = const (54)

New coordinates, etc.:

~r′ = ~r − ~R = ~r − ~V t − ~R0 (55)

~v′ = ~v − ~V (56)

Example: Projectile with vx 6= 0 and new ref. frame with ~V = (vx , 0).
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V. NEWTON’S LAWS

A. Force

1. Units

”Newton of force”

N = kg
m

s2
(57)

2. Vector nature

From experiment action of two independent forces ~F1 and ~F2 is equivalent

to action of the resultant

~F = ~F1 + ~F2 (58)
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~F1 + ~F2 + ~F3 = 0

~F3 = −
(

~F1 + ~F2

)

B. The Laws

1. If ~F = 0 (no net force) then ~v = const

2.

~F = m~a (59)

3.

~F12 = −~F21 (60)

Notes: the 1st Law is not a trivial consequence of the 2nd one for ~F = 0,

but rather it identifies inertial reference frames where a free body moves
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with a constant velocity. In the 3rd Law forces ~F12 and ~F21 are applied to

different bodies; both forces, however, are of the same physical nature (e.g.

gravitational attraction).

Examples. Force from equiliibrium or from acceleration (without specify-

ing the nature of force).

• resultant of two forces (in class)

• A force F acts on a particle with mass m which accelerates from rest over

the distance of ∆x during time t. Find F . Solution. From ∆x = 1
2at2

find a = 2∆x/t2; then, F = ma.

• A car with mass M increases speed from v1 to v2 over distance ∆x. Find

the force. Solution. From ∆x = 1
2 (v1 + v2) t find t. Then, a = (v2−v1)/t

and F = Ma. (Alternatively, can use ∆x = (v2
2 − v2

1)/(2a) to find a
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directly.)

1. Gravitational force

~Fg = m~g (61)

Weight - the force an object excerts on a support. Will conside with m~g for

a stationary object. (Note: the textbook uses the latter as a definiton with

weight always equal m~g; other books will use the former definiton of ”weight”,

or ”apparent weight” as force on a support. That can be different from m~g

in case of acceleration, with the extreme example of ”weightlessness”, as will

be discussed in class).

Example: Gravitational plus another force.

A rocket of mass m starts from rest and accelerates up due to a force F from

the engine. At the altitude H the engine shuts off. Describe the full motion.

With engine:

a1 = (F − mg)/m

Speed at H from

H = (v2 − 0)/(2a1)

Without engine

a2 = −g

and extra h from h = v2/(2g)
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2. FBD, normal force

C. Statics

In equilibrium

~F ≡
∑

i

~Fi = 0 (62)

(all forces are applied to the same body!).

Example:

~T + ~N + m~g = 0

x) : −T + mg sin θ = 0 , T = mg sin θ
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y) : N − mg cos θ = 0

Example: From symmetry

|~T1| = |~T2| ≡ T

x - automatic; from y:

T sin α + T sin α − mg = 0 , T = mg/(2 sin α)

Note the limits!

Example:

~T1 + ~T2 + m~g == 0

−T1 cos α + T2 sin β = 0
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T1 sin α + T2 cos β − mg = 0

Then use T2 = T1 cos α/ sin β...

D. Dynamics: Examples

The following examples will be discusses in class:

• finding force between two accelerating blocks

• apparent weight in an elevator

• Atwood machine

• block on inclined plane (no friction)

Two blocks: a horizontal force ~F is applied to a block with mass M (red)

which in turn pushes a block with mass m (blue); ignore friction. Find ~N

and ~a. (note that the 3rd Law is already used in the diagram).

N-N
F

Solution (quick): first treat the 2 blocks as a single solid body. From 2nd

Law for this ”body”

~a = ~F/(M + m)

From 2nd Law for mass m:

~N = m~a
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Solution (academic): write 2nd Law for each of the 2 block separately. For

M

~F +
(

− ~N
)

= M~a

For m, as above

~N = m~a

which will lead to the same result (add the 2 equations together to find ~a).

Weight in an elevator: Find the ”apparent weight” of a person of mass m

if the elevator accelerates up with acceleration ~a.
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Solution. Forces on the person: m~g (down, black, applied to center-of-mass)

and ~N (reaction of the floor, blue, applied to feet) - up. [A force − ~N -not

shown- acts on the floor and determines ”apparent weight”]. The 2nd Law

for the person

m~g + ~N = m~a

From here

~N = m (~a − ~g)
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or in projection on vertical axis

N = m(g + a)

Note: N > mg for ~a up and N < mg for ~a down; N = 0 for ~a = ~g.

Atwood machine:

?
m~g

?
M~g

6

~T1
6~T2

FIG. 12: Atwood machine. Mass M (left) is almost balanced by a slightly smaller mass m. Pulley

has negligible rotational inertia, so that both strings have the same tension
∣

∣

∣

~T1

∣

∣

∣
=

∣

∣

∣

~T2

∣

∣

∣
= T

Let T1 and T2 be tensions in left string (connected to larger mass M) and

in the right string, respectively.

• 2nd Law(s) for each body; for M axis down, for m - up.

• constrains: a-same, tensions - same

From 2nd Law(s):

Mg − T1 = Ma , T2 − mg = ma

Add together to get (with constrains)

(M − m)g = (M + m)a
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which gives

a = g
M − m

M + m

What if need tension?

T1 = Mg − ma < Mg , T2 = mg + ma > mg

(should be the same).

Consider the last example - Fig. 13. First let us solve it in several major

steps and then try to come up with general suggestions.

m~g

~a

~N

y

x

FIG. 13: A block on a frictionless inclined plane which makes an angle θ with horizontal.

• identify forces, m~g and ~N in our case and the assumed acceleration ~a

(magnitude still to be found).

• write the 2’d Law (vector form!)

~N + m~g = m~a

• select a ”clever” system of coordinates x, y.
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• write down projections of the vector equation on the x, y axes, respec-

tively:

x : mg sin θ = ma

y : N − mg cos θ = 0

the x-equation will give acceleration a = g sin θ (which is already the

solution); the y equation determines N .

• before plugging in numbers, a good idea is to check the limits. Indeed,

for θ = 0 (horizontal plane) a = 0 no acceleration, while for θ = π/2

one has a = g, as should be for a free fall.

A few practical remarks to succeed in such problems.

• The original diagram should be BIG and clear. If so, you will use it as

a FBD, otherwise you will have to re-draw it separately with an extra

possibility of mistake.

• In the picture be realistic when dealing with ”magic” angles of 30, 45, 60

and 90 degrees. Otherwise, a clear picture is more important than a

true-to-life angle.

• Vectors of forces should be more distinct than anything else in the pic-

ture; do not draw arrows for projection of forces - they can be confused

with real forces if there are many of them.

• the force of gravity in the picture should be immediately identified as

m~g (using an extra tautological definiton, such as ~Fg = m~g adds an

equation and confuses the picture).
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• If only one body is of interest, do not draw any forces which act on other

bodies (in our case that would be, e.g. a force − ~N which acts on the

inclined plane).

• select axes only after the diagram is completed and the 2’d Law is writ-

ten in vector form. As a rule, in dynamic problems one axes is selected

in the direction of acceleration (if this direction can be guessed).
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VI. NEWTON’S LAWS: APPLICATIONS TO FRICTION AND TO CIRCULAR

MOTION

A. Force of friction

Force of friction on a moving body:

f = µN (63)

Direction - against velocity; µ (or µk) - kinetic friction coefficient.

Static friction:

fs ≤ µsN (64)

with µs - static friction coefficient.

1. Example: block on inclined plane

(see next page)
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m~g

~a

~N

y

x

~f
Q

Q
Q

Qk

FIG. 14: A block sliding down an inclined plane with friction. The force of friction ~f is opposite

to the direction of motion and equals µk N .

• identify forces, ~f , m~g and ~N and the acceleration ~a (magnitude still to be found).

• write the 2’d Law (vector form!)

~f + ~N + m~g = m~a

• select a ”clever” system of coordinates x, y.

• write down projections of the vector equation on the x, y axes, respectively:

x : −f + mg sin θ = ma

y : N − mg cos θ = 0

• relate friction to normal force:

f = µk N

the above 3 equations can be solved (in class). Answer:

a = g (sin θ − µk cos θ)
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• Note: the body will keep moving only for

µk < tan θ

The body will start moving only for

µs < tan θ
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First, try without friction, i.e. f = 0 and do not need ~N and ~Mg.

• for body M on the table

T = Ma

• for hanging body m:

mg − T = ma

Thus, adding the two equations together (to get rid of T ):

mg = Ma + ma , or a = g
m

m + M

With frition:

• for body M on the table

T − f = Ma (horizontal)

N − Mg = 0 (vertical)

• for hanging body m (same as before):

mg − T = ma

•
f = µN = µMg (new)
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Thus,

mg − f = (M + m)a , a =
mg − µMg

M + m
= g

m − µM

M + m
> 0

(if µM > m mootion is impossiblle - friction too strong).

43



M g

m g

N
T

T
f

Assume large enough M to move left. Hanging mass (axis down):

Mg − T = Ma (65)

Mass on incline (x-axis uphill):

T − mg sin θ − f = ma (66)

From above

g(M − m sin θ) − f = (M + m)a (67)

How to find friction? - from N :

N − mg cos θ = 0 (68)

N = mg cos θ , f = µN (69)

g(M − m sin θ − µm cos θ) = (M + m)a (70)

a = . . . (71)
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B. Fast way to solve quasi-one-dimensional problems

Only external forces or their projections along the motion. No tension, no normal force.

Friction

f = µmg (horizontal) , f = µmg cos θ (inclined)

General
∑

Fext = Mtota

Example: Atwood machine

Mg − mg = (m + M)a , a = . . .

if need T

T − mg = ma , T = . . .

Example: external force (no friction)

F − mg sin θ = (M + m)a , a = . . .

Tension (if need) from

F − T = Ma , T = F − Ma

Example: 2 blocks with friction, large M
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M g

m g

N
T

T
f

select positive direction uphill

Mg − µmg cos θ − mg sin θ = (M + m)a , a = . . .

Mg − T = Ma , T = M(g − a)

Example: 3 blocks with friction, M > m

Mg − mg − µM1g = (m + M1 + M)a , a = . . .

Tension T1 between M1 and M from

Mg − T1 = Ma

Tension T between M1 and m from

T − mg = ma
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C. Centripetal force

Newton’s laws are applicable to any motion, centripetal including. Thus, for centripetal

force of any physical origin

Fc = mac ≡ m
v2

r
= mω2r (72)

Centripetal force is always directed towards center, perpendicular to the velocity - see Fig.

15. Examples: tension of a string, gravitational force, friction.

FIG. 15: Position (black), velocities (blue) and centripetal force (red) vectors for a uniform circular

motion in counter-clockwise direction. The direction of force coincides with centripetal acceleration

(towards the center). The value of centripetal force at each point is determined by the vector sum

of actual physical forces, e.g. normal force and gravity in case of a Ferris Wheel, or tension plus

gravity in case of a conic pendulum.

Simple example: A particlle with mass around a circle with a diameter d = 2 m. It takes

t = 3 s to complete one revolution. Find the magnitude of the centripetal force F .

Solution: Since F = mac , need acceleration. Use

ac = v2/r with v = πd/t and ac = 2π2
d

t2
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Equivalently

ac = ω2
d

2
with ω = 2π/t

Thus,

F = 2π2
md

t2
= . . .

1. Conic pendulum

See Fig. 16, forces will be labeled in class.

FIG. 16: A conic pendulum rotating around a vertical axes (dashed line). Two forces gravity (blue)

and tension (black) create a centripetal acceleration (red) directed towards the center of rotation.

The angle with vertical is θ, length of the s tring is L and radius of revolution is r = L sin θ.

One has the 2nd Law:

~T + m~g = m~ac

In projections:

x : T sin θ = mac = mω2r

y : T cos θ − mg = 0
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Thus,

ω =

√

g

L cos θ
≃

√

g

L

(the approximation is valid for θ ≪ 1). The period of revolution

2π

ω
≃ 2π

√

L

g

Note that mass and angle (if small) do not matter.

2. Satellite

~Fg = m~ac

Fg = mg , ac = v2/r

Thus,

g =
v2

r

v =
√

gr

about 8 km/s for Earth. Period of revolution

2π
√

r/g
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3. Turning bike

~N + ~f + m~g = m~a

x-axis - towards the center (dashed):

f = ma = mv2/R

y-up:

N − mg = 0

and

f ≤ µsN = µsmg

Thus,

v2/R ≤ µsg

D. (Advanced) ”Forces of inertia”

~F = m~a

Define

~Fi = −m~a

~F + ~Fi = 0

”statics”.
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VII. WORK

A. Units

Joule (J):

1 J = 1 N · m = kg
m2

s2
(73)

B. Definitions

Constant force:

W = ~F · ∆~r ≡ Fx∆x + Fy∆y (74)

Example: work by force of gravity

Fx = 0 , Fy = −mg

Wg = −mg∆y (75)

(and ∆x absolutely does not matter!)

Example:

~F =~i + 2~j , ~r1 = 3~i + 4~j , ~r2 = 6~i − 4~j

∆~r = 3~i − 8~j , W = 3 · 1 + (−8) · 2 = −13

Variable force:

Let us break the path from ~r1 to ~r2 in small segments ∆~ri with ~Fi ≃ const. Then

Wi ≃ ~Fi · ∆~ri
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and total work

W =
∑

i

Wi →
∫ ~r2

~r1

~F · d~r (76)

Note: forces which are perpendicular to displacement do not work, e.g. the centripetal

force, normal force.

C. 1D motion and examples

For motion in x-direction only

W =

∫ x2

x1

Fx dx (77)

If Fx is given by a graph, work is the area under the curve (can be negative!).

Example: find work and (from KET) the final speed of an m = 2 kg particle with

v0 = 10 m/s

W = 16 J , W =
1

2
mv2 − 1

2
mv2

0

v2 = v2

0
+ 2W/m = . . .

53



Spring:

F = −kx (78)

k - ”spring constant” (also known as ”Hook’s law”). Work done by the spring

Wsp =
1

2
(F2 + F1)(x2 − x1) = −1

2
kx2

2 +
1

2
kx2

1 (79)

(If the spring is stretched from rest, the term with x2
1

will be absent and the work done by

the spring will be negative for any x2 6= 0.)

VIII. KINETIC ENERGY

A. Definition and units

K =
1

2
mv2 (80)

or if many particles, the sum of individual energies.

Units: J (same as work).

B. Relation to work

1. Constant force

W = Fx∆x + Fy∆y = m [ax∆x + ay∆y]
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According to kinematics

ax∆x =
v2

x − v2
0x

2
, ay∆y =

v2
y − v2

0y

2

Thus,

W = ∆K (81)

which is the ”work-energy” theorem.

Examples: gravity and friction (in class).

The ”policeman problem”. Given: L, µ, find vo

Friction: f = µmg.

W = −fL = −µmgL < 0 (!) (82)

∆K = 0 − 1

2
mv2

0 (83)

−mv2
0/2 = −µmgL (84)

v =
√

2µgL (85)

2. Variable force

Again, break the displacement path into a large number N of small segments ∆ri . For

each

Wi = ∆Ki ≡ Ki − Ki−1

Thus,

W =
N

∑

i

Wi = KN − K0 ≡ ∆K

Example: spring.
1

2
m

(

v2 − v2

0

)

= −k

2

(

x2 − x2

0

)
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C. Power

P =
dW

dt
= ~F · ~v

Units: Watts. 1W = 1 J/s

Re-derivation of work-energy theorem:

d

dt
K =

d

dt

m

2
v2 =

m

2

d

dt
(~v · ~v) = m

d~v

dt
· ~v = ~F · ~v =

dW

dt

Example: An M = 500 kg horse is running up an α = 30o slope with v = 4 m/s. Find P :

P = mg sin α · v ≃ 500 · 9.81

2
4 ≈ . . .

Example. For a fast bike the air resistance is ∼ v2. How much more power is needed to

double v? Ans.: 8 times more.
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A B

FIG. 17: Generally, the work of a force between points A and B depends on the actual path.

However, for some ”magic” (conservative) forces the work is path-independent. For such forces one

can introduce potential energy U and determine work along any path as W = UA − UB = −∆U .

Dr. Vitaly A. Shneidman, Phys 111, 7th Lecture

IX. POTENTIAL ENERGY

A. Some remarkable forces with path-independent work

See Fig. 17 and caption.

Examples:

• Constant force

W =
∑

~F · ∆~ri = ~F ·
∑

∆~ri = ~F · ∆r = ~F · ~rB − ~F · ~rA (86)

with potential energy

U (~r) = −~F · ~r (87)

Example force of gravity with Fx = 0 , Fy = −mg and

Ug = mgh (88)

• Elastic (spring) force

W ≃ −
∑

k
xi + xi+1

2
(xi+1 − xi) = −k

2

∑

x2
i+1 − x2

i = −k

2

(

x2
f − x2

i

)

(89)
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with potential energy

Usp(x) =
1

2
kx2 (90)

• Other: full force of gravity F = −mg with r-dependent g, and any force which does

not depend on velocity but depends only on distance from a center.

• Non-conservative: kinetic friction (depends on velocity, since poits against ~v)

B. Relation to force

U(x) = −
∫

F (x) dx (91)

F = −dU/dx (92)

X. CONSERVATION OF ENERGY

Start with

∆K = W

If only conservative forces

W = −∆U (93)

thus

K + U = const ≡ E (94)

Examples:
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• Maximum hight.

E = mgh +
1

2
mv2

0 +
1

2
mv2

0
= mghmax + 0

hmax =
v2

0

2g

• Galileo’s tower. Find speed upon impact

mgh + 0 = 0 +
1

2
mv2

v2 = 2gh

• Coastguard cannon (from recitation on projectiles). Fing speed upon impact

mgH +
1

2
mv2

0
= 0 +

1

2
mv2

v2 = v2

0
+ 2gH

(note that the angle does not matter!).

• A spring with given k,m is stretched by X meters and released. Find vmax.

E =
1

2
kx2 +

1

2
mv2

1

2
kX2 + 0 = 0 +

1

2
mv2

max

vmax = X
√

k/m

A. Conservative plus non-conservative forces

For conservative forces introduce potential energy U , and then define the total mechanical

energy

Emech = K + U

One has

W = −∆U + Wnon−cons (95)
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Then, from work-energy theorem

∆Emech = ∆ (K + U) = Wnon−cons (96)

Examples:

• Galileo’s Tower revisited (with friction/air resistance). Given: H = 55 m, m = 1 kg

and Wf = −100 J is lost to friction (i.e. the mechanical energy is lost, the thermal

energy of the mass m and the air is increased by +100 J). Find the speed upon impact.

(

0 +
1

2
mv2

)

− (mgH + 0) = Wf < 0

1

2
mv2 = mgh − |Wf | , v = . . .

• Sliding crate (from recitation)) revisited. Given L,m, θ, µ find the speed v at the

bottom.

h ≡ L sin θ

f = µmg cos θ

Wf = −fL

(0 +
1

2
mv2) − (mgh + 0) = Wf

v2 = 2gh − 2

m
|Wf |

Example: Problem which is too hard without energy

pendulum or one way rock-on-a-string?. Left: forces. Right: energy solution.
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θ - angle with vertical. Then,

Ug = mgh = mgr (1 − cos θ) , Umax

g = 2mgr

E = Ug +
1

2
mv2 , E > 2mgr − rotation , 0 < E < 2mgr − oscillations

What if need T? Lowest point

Ug = 0 , E =
1

2
mv2

T − mg = mv2/r = 2E/r

——————————————————————–

B. Advanced: Typical potential energy curves

U =
1

2
kx2 (97)
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U =
1

2
ky2 + mgy (98)

U = mgL(1 − cos θ) (99)
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K = E − U ≥ 0 , v = ±
√

2K/m (100)

C. Advanced: Fictitious ”centrifugal energy”

U = −1

2
mω2r2 (101)
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U = Ug + Ucent = mgh − 1

2
mω2r2 = const (102)

h(r) = h(0) +
ω2

g
r2 (103)

D. Advanced: Mathematical meaning of energy conservation

Start from 2nd Law with F = F (x) (not v or t !)

mẍ = F (x) | × ẋ (104)

ẋẍ =
d

dt
(ẋ)2/2

ẋF (x) =
d

dt

∫

F (x) dx = − d

dt
U(x)

Thus

d

dt
(K + U) = 0 (105)

K + U = const = E (106)
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E. Examples:

1. Suppose, the crate from the previous recitation problem is let got at the top of the

ramp and slides back to the floor. Do the following:

1. find the work done by the force of friction

Wf = −µmg cos θ L

2. find the change in potential ennrgy due to gravity (watch for the sign!)

∆U = mg 0 − mgh

3. find the speed at the bottom of ramp

(mv2/2 − 0) + ∆U = Wf

v = . . .

2. In the Atwood machine the heavier body on left has mass M = 1.001 kg, while the

lighter body on right has mass m = 1 kg. The system is initially at rest, there is no friction

and the mass of the pulley can be ignored. Find the speed after the larger mass lowers by

h = 50 cm.

∆K = Mv2/2 + mv2/2 − 0
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∆U = −Mgh + mgh

∆K + ∆U = 0 , v = . . .

3. A skier slides down from a hill which is H = 30 m high and then, without losing speed,

up a hill which is h = 10 m high. What is his final speed? (a) Ignore friction. (b) Assume

a small average friction force of 1N and the combined length of the slopes L = 200m. The

mass of the skier is m = 80 kg.

∆K = mv2/2 , ∆U = mgh − mgH

∆K + ∆U = WF = −fL , v = . . .

4. A spring gun is loaded with a m = 20 g ball and installed vertically, with the zero

level y = 0 corresponding to uncompressed spring. When loading the gun, the spring is

compressed down by 10 cm. Find the maximum height reached by the ball after the gun is

fired. The spring constant is k = 100N/m.

Usg = ky2/2 + mgy , y0 = −10 cm

Ufinal = mgh

∆K = 0

thus

∆U = 0

h = . . .
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XI. MOMENTUM

A. Definition

One particle:

~p = m~v (107)

System:

~P =
∑

i

~pi =
∑

i

mi~vi (108)

Units: kg · m/s (no special name).

B. 2nd Law in terms of momentum

Single particle:

m~a = m
d~v

dt
=

d(m~v)

dt

d~p

dt
= ~F (109)

∆~p =

∫ t2

t1

dt ~F (t) = ~Fav ∆t (110)

∫ t2

t1
dt ~F (t) - impulse. ”It takes an impulse to change momentum”.

Example. A steel ball with mass m = 100 g falls down on a horizontal plate with v =

3 m/s and rebounds with V = 2 m/s up. (a) find the impulse from the plate; (b) estimate

Fav if the collision time is 1 ms.

Select the positive direction up. Then, p1 = −3 × 0.1 = −.3 kg m/s and after the collision
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p2 = mV = 0.2 kg m/s. (a) Impulse p2 − p1 = 0.5 kg · m/s. (note: |p1| and |p2| add up!).

(b) Fav = 0.5/0.001 = 500N (large!).

System of two particles with NO external forces:

d~p1/dt = ~F12

d~p2/dt = ~F21

d ~P
dt

= ~F12 + ~F21 = 0 (111)

i.e.

~P = const (112)

and the same for any number of particles.

XII. CENTER OF MASS (CM)

A. Definition

~R =
1

M

∑

i

mi~ri , M =
∑

i

mi (113)

Example: CM of a triangle.
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B. Relation to total momentum

~Vcm =
d

dt
~R =

1

M

∑

i

mi

d

dt
~ri =

1

M
~P

~P = M ~VCM (114)

Example: Find ~VCM if m = 1 kg (red), M = 2 kg (blue), ~v1 = (0, 3) m/s, ~v2 = (2, 0) m/s

~P = (4, 3) kg m/s , ~VCM = (4/3, 1) m/s
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with

VCM = 5/3 m/s

C. 2nd Law for CM

Consider two particles:

d~p1/dt = ~F12 + ~F1,ext

d~p2/dt = ~F21 + ~F2,ext

d

dt
~P = ~F1,ext + ~F2,ext ≡ ~Fext

but
d

dt
~P = M

d

dt
~Vcm = M~acm

thus

M~aCM = ~Fext (115)

Example: acrobat in the air - CM moves in a simple parabola.

If ~Fext = 0

~VCM = const (116)

Examples: boat on a lake, astronaut.

D. Advanced: Energy and CM

~vi = ~v′

i + ~VCM

Note:
∑

i

mi~v
′

i = 0

E =
1

2

∑

i

mi

(

~v′

i + ~VCM

)2

E =
1

2

∑

i

mi (v
′

i)
2
+

(

∑

i

mi~v
′

i · ~VCM

)

+
1

2
MV 2

CM
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E =
1

2

∑

i

mi (v
′

i)
2
+

1

2
MV 2

CM

2nd term - KE of the CM, 1st term - KE relative to CM. (will be very important for rotation).

XIII. COLLISIONS

Very large forces F acting over very short times ∆t, with a finite impulse Fa ∆t. Impulse

of ”regular” forces (e.g. gravity) over such tiny time intervals is negligible, so the colliding

bodies are almost an insolated system with

~P ≃ const

before and after the collision. With energies it is not so simple, and several options are

possible.

A. Inelastic

~P = const , K 6= const (117)

1. Perfectly inelastic

After collision:

~V1 = ~V2 (118)
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FIG. 18: Example (1D). A chunk of black coal of mass m falls vertically into a vagon with mass

M , originally movin with velocity V . (Only) the horizontal component of momentum is conserved:

m · 0 + M · V = (M + m)vfinal

FIG. 19:

Example (2D). A car m (red) moving East with velocity v collides and hooks up with a

truck M moving North with velocity V . Find the magnitude and direction of the resulting

velocity V1. Solution:

Direction:

tan θ =
V1y

V1x

=
Py

Px

=
MV

mv

Magnitude:

(M + m)~V1 = m~v + M ~V

V1x = mv/(M + m) , V1y = MV/(M + m)
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V1 =
√

V 2
1x + V 2

1y

Note: in inelastic collision energy is always lost:

1

2
(M + m)V 2 −

(

1

2
mv2

1
+

1

2
Mv2

2

)

< 0

2. Explosion

A rocket with M,~v brakes into m1, ~V1 and m2, ~V2 with m1 + m2 = M .

M~v = m1
~V1 + m2

~V2

Energy is increased.

B. Elastic

~P = const , K = const (119)

1. Advanced: 1D collison, m 6= M

Collision of a body m , v with a stationary body M .

From conservation of momentum:

m (v − V1) = MV2

From conservation of energy:
m

2

(

v2 − V 2

1

)

=
M

2
V 2

2

Divide 2nd equation by the 1st one (V2 6= 0 !) to get

v + V1 = V2

Use the above to replace V2 in equation for momentum to get

V1 =
m − M

m + M
v
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and then

V2 =
2m

M + m
v

Note limits and special cases:

• m = M : V1 = 0, V2 = v (”total exchange”)

• M → ∞ (collision with a wall): V1 = −v (reflection)

• m (”tennis racket”) ≫ M (”tennis ball”): V2 = 2v

FIG. 20: Elastic collision of a moving missile particle m (red) with a stationary target M . (a)

m < M ; (b) m = M ; (c) m > M . In each case both energy and momentum are conserved.

2. Advanced: 2D elastic colision of two isentical masses

Collisions of 2 identical billiard balls (2nd originally not moving).

~P (before collision) = ~P (after)

K (before collision) = K (after)

Momentum conservation gives

~v = ~V1 + ~V2

Energy conservation gives

v2/2 = V 2

1
/2 + V 2

2
/2
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or

~V1 · ~V2 = 0

which is a 90o angle for any V2 6= 0.

FIG. 21: Off-center elastic collision of 2 identical billiard balls (one stationary). Both energy and

momentum are conserved. Note that the angle between final velocities is always 90o.

Advanced Collisions of elementary particles

K =
p2

2m
(120)

only for v ≪ c. General

E =
√

m2c4 + c2p2

Two limits:

m = 0 , E = cp

(”photon”, v = c) and

m 6= 0 , v ≪ c : E ≈ mc2 +
p2

2m
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XIV. KINEMATICS OF ROTATION

A. Radian measure of an angle

see Fig. 22. Arc length

l = rθ (121)

if θ is measured in radians.

FIG. 22: Angle of 1 rad ≈ 57.3o . For this angle the length of the circular arc exactly equals the

radius. The full angle, 360o , is 2π radians.

B. Angular velocity

Notations: ω (omega)

Units: rad/s
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Definition:

ω =
dθ

dt
≈ ∆θ

∆t
(122)

Conversion from revolution frequency (ω = const):

Example: find ω for 45 rev/min

45
rev

min
= 45

2π rad

60 s
≈ 4.7

rad

s

C. Connection with linear velocity and centripetal acceleration for circular motion

v =
dl

dt
=

d(rθ)

dt
= ωr (123)

ac = v2/r = ω2r (124)

Advanced. ~ω as a vector:

Direction - along the axis of revolution (right-hand rule). Relation to linear

velocity

~v = ~ω × ~r

D. Angular acceleration

Definition:

α =
dω

dt
=

d2θ

dt2
(125)
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Units:

[α] = rad/s2

E. Connection with tangential acceleration

aτ =
dv

dt
= r

dω

dt
= rα (126)

(very important for rolling problems!)

F. Rotation with α = const

Direct analogy with linear motion:

x → θ , v → ω , a → α

ω = ω0 + αt (127)

θ = θ0 + ω0t +
1

2
αt2 (128)

θ − θ0 =
ω2 − ω2

0

2α
(129)

New: connection between θ (in rads) and N (in revs) and ω in rad/s and

frequency f = 1/T in rev/s:

θ = 2πN , ω = 2πf (130)

Examples:
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• a free spinning wheel makes N = 1000 revolutions in t = 10 seconds,

and stops. Find α. Solution: in formulas

ω = 0 , θ − θ0 = 2πN

or

0 = ω0 + αt , 2πN = ω0t +
1

2
αt2

Thus,

ω0 = −αt , 2πN = (−αt)t +
1

2
t2

and

2πN = −1

2
αt2 , α = −4πN

t2
= . . .

• Given ω(0) = 5 rad/s , t = 1 s , N = 100 rev (does not stop!). Find α.

2πN = ω(0)t +
1

2
αt2 , α = 2

2πN − ω(0)t

t2
= . . .

XV. KINETIC ENERGY OF ROTATION AND ROTATIONAL INERTIA

A. The formula K = 1/2 Iω2

For any point mass

Ki =
1

2
miv

2
i (131)

For a solid rotating about an axis

vi = ωri (132)

with ri being the distance from the axis and ω, the angular velocity being

the same for every point. Thus, the full kinetic energy is

K =
∑

i

Ki =
1

2
ω2

∑

i

mir
2
i ≡ 1

2
Iω2 (133)
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Here I, the rotational inertia, is the property of a body, independent of ω

(but sensitive to selection of the rotational axis):

I =
∑

i

mir
2
i , K =

1

2
Iω2 (134)

Or, for continuous distribution of masses:

I =

∫

dl λr2 (135)

for a linear object with linear density λ (in kg/m); or

I =

∫

dS σr2 (136)

for a flat object (S-area) with planar density σ (in kg/m2), or

I =

∫

dV ρr2 (137)

for a 3D object (V -volume) with density ρ (in kg/m3)

B. Rotational Inertia: Examples

1. Collection of point masses

Two identical masses m at x = ±a/2. Rotation in the xy plane about the

z-axis through the CM.

I = 2 · m(a/2)2 = ma2/2 =
1

4
Ma2 , M = m + m (138)
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FIG. 23: 3 identical point masses m on a massless rod of length L. Left: axis through CM.

ICM = m(L/2)2 + m · 0 + m(L/2)2 = mL2/2. Right: axis through the end. Iend = m · 0 +

m(L/2)2 + mL2 = (5/4)mL2 > ICM (!).

2. Hoop

Hoop of mass M , radius R in the xy plane, center at the origin. Rotation

in the xy plane about the z-axis.

Linear density

λ = M/(2πR)

Ihoop =

∫ 2πR

0

dl λR2 = MR2 (139)

(the same for hollow cylinder about the axis)

3. Rod

Uniform rod of mass M between at x = ±l/2. Rotation in the xy plane

about the z-axis through the center of mass.

x

FIG. 24: Evaluating rotational inertia of a rod

Linear density

λ = M/l
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Thus,

I =

∫ l/2

−l/2

dx λx2 = 2λ ·
∫ l/2

0

dx x2 = 2λ
1

3
(l/2)3

Or,

Irod =
Ml2

12
(140)

4. Disk

Uniform disk of mass M , radius R in the xy plane, center at the origin.

Rotation in the xy plane about the z-axis.

FIG. 25: Evaluating rotational inertia of a disk

Planar density

σ = M/
[

πR2
]

Elementary area

dS = 2πr dr
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Idisk =

∫ R

0

dr 2πrσr2 =
1

2
MR2 (141)

(the same for solid cylinder about the axis).

5. Advanced: Solid and hollow spheres

Solid sphere: slice it into collection of thin disks of thickness dz and radius

r =
√

R2 − z2

FIG. 26: Evaluating rotational inertia of a solid sphere

Isph =

∫ R

−R

dz
1

2
πr2ρr2 =

2

5
MR2 (142)

Hollow:

Ih.sph =
2

3
MR2
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C. Parallel axis theorem

I = Icm + MD2 (143)

with Icm being rotational inertia about a parallel axis passing through the

center of mass and D - distance to that axis.

Proof:

~Rcm =
1

M

∑

i

~rimi

Introduce

~r′i = ~ri − ~Rcm

with
∑

i

~r′imi = 0

and

Icm =
∑

i

mi (r
′
i)

2

Now

I =
∑

i

mi

(

~r′i + ~D
)2

= Icm + MD2 + 2 ~D ·
∑

i

~r′imi

where the last sum is zero, which completes the proof.

Example: rod M, L about the end

ICM = ML2/12

with D = L/2:

Irod,end = ML2/12 + M(L/2)2 = ML2/3
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1. Distributed bodies plus point masses

FIG. 27: Modification of I by a point mass m added at distance a from center. Left: rod mass M ,

length L. Right: disk of mass M and radius R.

rod : I = Irod + ma2 = ML2/12 + ma2 = L2(M/3 + m)/4 if a ≃ L/2

disk : I = Idisk + ma2 = MR2/2 + ma2 = R2(M/2 + m) if a ≃ R

2. Advanced: Combinations of distributed bodies.

Example: Solid spheres

with radius a and mass M , rod length L; rotation axis through center.

85



1) negligible size of spheres (a ≪ L) and massless rod

I = 2 × M(L/2)2 = ML2/2

2) non-negligible size of spheres

I = 2 × 2

5
Ma2 + ML2/2

3) rod of mass m - add mL2/12

Example:

Solid spheres with radius a and mass M each, rods with length L each;

rotation axis through center, perpendicular to plane.

1) negligible size of spheres (a ≪ L) and massless rods

I = 4 × M(L/2)2 = ML2

Note: central mass does not contribute!

2) non-negligible size of spheres

I = 5 × 2

5
Ma2 + ML2
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Note: all 5 spheres contribute.

3) rods of mass m each - add 2 × mL2/12

D. Conservation of energy, including rotation

K + U = const (144)

where K is the total kinetic energy (translational and rotational for all

bodies) and U is total potential energy.

E. ”Bucket falling into a well”

T

T

mg

Suppose mass m goes distance h down starting from rest. Find final velocity

v. Pulley is a disk M , R. Solution: ignore T (!), use energy only.

• energy conservation
1

2
mv2 +

1

2
Iω2 = mgh

87



• constrains

v = ωR

Thus

v2 = 2gh
m

m + I/R2

If I = MR2/2 (disk)

v2 = 2gh
1

1 + M/(2m)
, v = . . .

1. Advanced: Atwood machine

FIG. 28: Atwood machine. Mass M (left) is almost balanced by a slightly smaller mass m. Pulley

has rotational inertia I and radius R.

Suppose the larger mass goes distance h down starting from rest. Find

final velocity v.

• energy conservation

1

2
(M + m)v2 +

1

2
Iω2 = (M − m)gh

• constrains

v = ωR
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Thus

v2 = 2gh
M − m

M + m + I/R2

Acceleration from

h = v2/2a

which gives

a = g
M − m

M + m + I/R2

Note the limit: m = 0, I = 0 gives a = g (free fall).

2. Rolling

FIG. 29: Rolling down of a body with mass m, rotational inertia I and radius R. Potential energy

at the top, mgh equals the full kinetic energy at the bottom, mv2/2 + Iω2/2.

Suppose the body rolls vertical distance h = L sin θ starting from rest. Find

final velocity v.

• energy conservation
1

2
mv2 +

1

2
Iω2 = mgh

• constrains

v = ωR

Thus

v2 = 2gh
1

1 + I/ (mR2)
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hoop : I = MR2 , v2 = 2gh
1

1 + 1

disk : I = MR2/2 , v2 = 2gh
1

1 + 1/2

The disk wins!

Advanced. Acceleration from

a = v2/2l , l = h/ sin θ

which gives

a = g sin θ
1

1 + I/ (mR2)

Note the limit: I = 0 gives a = g sin θ.
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XVI. TORQUE

A. Definition

Consider a point mass m at a fixed distance r from the axis of rotation. Only motion in

tangential direction is possible. Let Ft be the tangential component of force. The torque is

defined as

τ = Ftr = Fr sin φ = Fd (145)

with φ being the angle between the force and the radial direction. r sin φ = d is the ”lever

arm”. Counterclockwise torque is positive, and for several forces torques add up.

Units:

[τ ] = N · m
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(same as Joules).

B. 2nd Law for rotation

Start with a single point mass. Consider the tangential projection of the 2nd Law

Ft = mat

Now multiply both sides by r and use at = αr with α the angular acceleration.

τ = mr2α

For a system of particles mi each at a distance ri and the same α

∑

τ = Iα (146)
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C. Application of τ = Iα

1. Revolving door

How long will it take to open a heavy, freely revolving door by 90 degrees starting from rest, if

a constant force F is applied at a distance r away from the hinges at an angle φ, as shown in the

figur? Make some reasonable approximations about parameters of the door, F and r. For I you

can use 1/3 ML2 (”rod”), with L being the horizontal dimension.

Solution: 1) find torque; 2) use 2nd law for rotation to find α; 3) use kinematics to estimate t

1.

τ = Fr sinφ

2.

α = τ/I = 3Fr sinφ/(ML2)

if r = L

α = 3F/(ML) sin φ

3. To maximize α use φ = π/2. From

θ = 1/2 αt2

t =
√

2θ/α =

√

π
I

FL

Using, e.g. M = 30 kg, F = 30N , L = 1m one gets t ∼ 1 s, which is reasonable.
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2. Rotating rod

α = τ/I = (1/2 Mgl)

/(

1

3
Ml2

)

=
3

2
g/l

Linear acceleration of the end:

a = αl =
3

2
g > g (!)

3. Rotating rod with a point mass m at the end.

Will it go faster or slower?

Solution:

same as above, but

I → 1/3 Ml2 + ml2 , τ → 1/2 Mgl + mgl

Thus,

α =
3

2

g

l

1 + 2m/M

1 + 3m/M

Linear acceleration of the end:

α =
3

2
g
1 + 2m/M

1 + 3m/M

(which is smaller than before, but still larger than g)
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4. ”Bucket falling into a well” revisited.

T

T

mg

2nd Law for rotation:

α = τ/I = TR/I

2nd Law for linear motion:

ma = mg − T

Constrain:

α = a/R

Thus (divide 1st equation by R/I and add to the 2nd one, replacing α):

aI/R2 + ma = mg

or

a = g
1

1 + I/ (mR2)

5. Advanced: Atwood machine revisited.

Let T1 and T2 be tensions in left string (connected to larger mass M) and in the right

string, respectively.

• 2nd Law(s) for each body (and for the pulley with τ = (T1 − T2) R)
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?
m~g

?
M~g

6

~T1
6~T2

FIG. 30: Atwood machine. Mass M (left) is almost balanced by a slightly smaller mass m. Pulley

has rotational inertia I and radius R.

• constrains a = αR

From 2nd Law(s):

Mg − T1 = Ma , T2 − mg = ma , (T1 − T2) = Iα/R

Add all 3 together to get (with constrains)

(M − m)g = (M + m)a + Iα/R = (M + m + I/R2)a

which gives

a = g
M − m

M + m + I/R2

and α = a/R. What if need tension?

T1 = Mg − ma < Mg , T2 = mg + ma > mg
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6. Rolling down incline revisited.

mg

Nf

FIG. 31: Rolling down of a body with mass m, rotational inertia I and radius R. Three forces

act on the body: ~f - static friction at the point of contact, up the plane; ~N - normal reaction,

perpendicular to the plain at the point of contact and m~g is applied to CM. Note that only friction

has a torque with respect to CM.

• 2nd Law(s) for linear and for rotational accelerations with torque τ = fR (f - static

friction)

• constrains a = αR

2nd Law (linear)

~f + ~N + m~g = m~a

or with x-axis down the incline

−f + mg sin θ = ma

2nd Law (rotation)

fR = Iα

or with constrain

f = aI/R2

Thus,

−aI/R2 + mg sin θ = ma

or

a = g sin θ
1

1 + I/mR2
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the same as from energy conservation.

Advanced. Alternative solution: ”Rotation” about point of contact with I ′ = I + mR2

(”parallel axes theorem”). Now only gravity has torque τ = mgR sin θ. Thus

α = τ/I ′ =
g

R
sin θ

1

1 + I/mR2

which gives the same a = αR.

D. Torque as a vector

1. Cross product

see Introduction on vectors

2. Vector torque

~τ = ~r × ~F (147)

XVII. ANGULAR MOMENTUM L

A. Single point mass

~L = ~r × ~p (148)

with ~p = m~v, the momentum.

Example. Find ~L for circular motion.

Solution: Direction - along the axis of rotation (as ~ω !). Magnitude:

L = mvr sin 90o = mr2ω
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or

~L = mr2~ω (149)

B. System of particles

~L =
∑

i

~ri × ~pi (150)

C. Rotating symmetric solid

1. Angular velocity as a vector

Direct ~ω allong the axis of rotation using the right-hand rule.

Example. Find ~ω for the spinning Earth.

Solution: Direction - from South to North pole. Magnitude:

ω =
2π rad

24 · 3600 s
≃ . . .

rad

s

If axis of rotation is also an axis of symmetry for the body

L =
∑

i

mir
2
i ω = Iω (151)

or

~L = I~ω

D. 2nd Law for rotation in terms of ~L

Start with

~F =
d~p

dt
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Then

~τ =
d ~L
dt

(152)
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XVIII. CONSERVATION OF ANGULAR MOMENTUM

Start with

~τ =
d ~L
dt

If ~τ = 0 (no net external torque)

~L = const (153)

valid everywhere (from molecules and below, to stars and beyond).

For a closed mechanical system, thus

E = const , ~P = const , ~L = const

For any closed system (with friction, inelastic collisions, break up of material, chemical

or nuclear reactions, etc.)

E 6= const , ~P = const , ~L = const

A. Examples

1. Free particle

~L(t) = ~r(t) × m~v

with ~v = const and

~r(t) = ~r0 + ~vt

Thus, from ~v × ~v = 0

~L(t) = (~r0 + ~vt) × m~v = ~r0 × m~v = ~L(0)
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2. Student on a rotating platform

(in class demo) Let I be rotational inertia of student+platform, and

I ′ ≃ I + 2Mr2

the rotational inertia of student+platform+extended arms with dumbbels (r is about the

length of an arm). Then,

L = Iω = I ′ω′

or

ω′ = ω
I

I ′
= ω

1

1 + 2Mr2/I

3. Chewing gum on a disk

An m = 5 g object is dropped onto a uniform disc of rotational inertia I = 2 ·10−4 kg ·m2

rotating freely at 33.3 revolutions per minute. The object adheres to the surface of the disc

at distance r = 5 cm from its center. What is the final angular velocity of the disc?

Solution. Similarly to previous example, from conservatioon of angular momentum

L = Iω = I ′ω′

New rotational inertia

I ′ = I + mr2

Thus

ω′ = ω
I

I ′
= ω

I

I + mr2
= ω

1

1 + mr2/I
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4. Measuring speed of a bullet

To measure the speed of a fast bullet a rod (mass Mrod) with length L and with two wood

blocks with the masses M at each end, is used. The whole system can rotate in a horizontal

plane about a vertical axis through its center. The rod is at rest when a small bullet of mass

m and velocity v is fired into one of the blocks. The bullet remains stuck in the block after

it hits. Immediately after the collision, the whole system rotates with angular velocity ω.

Find v. ( use L = 2 meters, ω = 0.5 rad/s and m = 5 g , M = 1 kg ,Mrod = 4 kg).

Solution. Let r = L/2 = 1 meter be the distance from the pivot. Angular momentum:

before collision

L =
L

2
mv

(due to bullet); after:

L = Iω

with

I = I0 + m(L/2)2

Here I0 is rotational inertia without the bullet:

I0 = MrodL
2/12 + 2M(L/2)2

Due to conservation of angular momentum

L

2
mv = Iω

and

v = 2Iω/(mL)
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5. Rotating star (white dwarf)

A uniform spherical star collapses to 0.3% of its former radius. If the star initially rotates

with the frequency 1 rev/day what would the new rotation frequency be?

Solution - in class
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XIX. EQUILIBRIUM

A. General conditions of equilibrium

∑

~Fi = 0 (154)

∑

~τi = 0 (155)

Theorem. In equilibrium, torque can be calculated about any point.

Proof. Let ~ri determine positions of particles in the system with respect to point O.

Selecting another point as a reference is equivalent to a shift of every ~ri by the same ~ro .

Then,

~τnew =
∑

i

(~ri + ~ro) × ~Fi = ~τ + ~ro ×
∑

i

~Fi = ~τ

B. Center of gravity

Theorem. For a uniform field ~g the center of gravity coinsides with the COM.

Proof. Torque due to gravity is

τg =
∑

i

~ri × mi~g =

(

∑

i

mi~ri

)

× ~g = M ~RCM × ~g

C. Examples

1. Seesaw
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FIG. 32: Two twins, masses m and m (left) against their dad with mass M . Force of gravity on

the seesaw and reaction of the fulcrum are not shown since they produce no torque.

If 2d, d and D are distances from the fulcrum for each of the twins and the father,

mg · 2d + mgd = MgD

or

3md = MD

Note that used only torque condition of equilibrium. If need reaction from the fulcrum ~N

use the force condition

~N + (2m + M + Mseesaw)~g = 0

2. Horizontal beam

Cancellation of torques gives

TL sin θ = Mg
L

2

or

T = Mg/2 sin θ
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FIG. 33: Horizontal beam of mass M and length L supported by a blue cord making angle θ with

horizontal. Only forces with non-zero torque about the pivot (tension ~T -blue- and gravity M~g

-black) are shown.

Note: if you try to make the cord horizontal, it will snap (T → ∞). For θ → π/2 one has

T → Mg/2, as expected. The force condition will allow to find reaction from the pivot:

~R + M~g + ~T = 0

(and −~R will be the force on the pivot).

3. Ladder against a wall

Torques about the upper point:

NL sin
(π

2
− θ

)

− fL sin θ − Mg
L

2
sin

(π

2
− θ

)

= 0

But from force equilibrium (vertical) N = Mg and (on the verge) f = µN . Thus,

1

2
cos θ − µ sin θ = 0
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FIG. 34: Blue ladder of mass M and length L making angle θ with horizontal. Forces: M~g (blue),

wall reaction ~F (red), floor reaction ~N (vertical), friction ~f (horizontal).

Dr. Vitaly A. Shneidman, Phys 111 (Honors), Lectures on Me-
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XX. GRAVITATION

A. Solar system

1 AU ≃ 150 · 106 km, about the average distance between Earth and Sun.

Mer - about 1/3 AU (0.39)

V - about 3/4 AU (0.73)

Mars - about 1.5 AU (1.53)

J - about 5 AU (5.2)
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. . .

Solar radius - about 0.5% AU

B. Kepler’s Laws

a

b

FIG. 35: The ellipse and Kepler’s Law’s:

a and b - major and minor semi-axes.

f = ±
√

a2 − b2 - foci (Sun in one focus, the other one empty!)

ǫ = |f |/a - eccentricity

a = b - circle

Cartesian:

x2/a2 + y2/b2 = 1 (156)

Polar:

x = r cos φ , y = r sin φ (157)

r(φ) = a(1 − ǫ2)/(1 + ǫ cos φ) (158)

ǫ > 1 - hyperbola, ǫ = 1 - parabola (a → ∞).
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1. 1st law

Path of a planet - ellipse, with Sun in the focus.

(Justification is hard, and requires energy, momentum and angular momen-

tum conservation, plus explicit gravitational force - Newton’s law)

2. 2nd law

Sectorial areas during the same time intervals are same - see figure.

(Justification is easy, and requires ONLY angular momentum conservation -

in class)

dS =
1

2
|~r × ~vdt| =

1

2m
L · dt = const · dt
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3. 3rd law

T 2 ∝ a3 (159)

and b does not matter!!!

(Justification is hard, and requires energy, momentum and angular momen-

tum conservation, plus explicit gravitational force; will derive explicitly only

for a circle, a = b , ǫ = 0.)

C. The Law of Gravitation

F = G
Mm

r2
(160)

or in vector form

~F = −G
Mm~r

r3
(161)

with G ≈ 6.7 · 10−11 N · m2/kg2 .

1. Gravitational acceleration

g = F/m = G
M

r2
= gs

(

R

r

)2

(162)

with gs acceleration on the surface and M, R - mass and radius of the central

planet (or, of the Sun). In vector form

~g = −G
M~r

r3
= −r̂gs

(

R

r

)2

, r̂ =
~r

r
(163)
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Example. Find gV if RV ≈ 0.4 RE and MV ≈ 0.056 ME

g ∝ M/R2 thus
gV

gE
=

MV

ME

(

RE

RV

)2

≈ 0.4

2. Satellite

v2

r
= g(r) = GM/r2

v =
√

GM/r (164)

T = 2πr/v = 2πr3/2/
√

GM

T 2 =
(

4π2/GM
)

r3 (165)

the 3rd law. (r is distance from center !)
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Example. Find v for earth around sun, and check if T = 1 year.

v =
√

6.7 · 10−11 2 · 1030/(150 · 109) ≈ 30
km

s

T =
2πr

v
≈ 1 year

Low orbit:

v2/r = g(r) = gs

(

R

r

)2

for r ≃ R

v ≃
√

gsR (166)

about 8 km/s for surface of Earth.
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D. Energy

U =

∫ ∞

r

F (r′)dr′ = −GMm

∫ ∞

r

dr′

(r′)2
(167)

(168)

U = −G
Mm

r
(169)

Probe m in combined field of Sun and planet

U = −G
MSm

rpS
− G

MEm

rpE
(170)

1. Escape velocity and Black Holes

E = K + U

U(∞) = 0, K(∞) = E > 0 for escape. Thus

1

2
mv2 − G

Mm

r
≥ 0 , v2

esc/2 = GM/R

vesc =
√

2GM/R =
√

2gsR ≈ 11 km/s

for the surface of Earth.

114



Example. A missile m is launched vertically up from the surface with

v0 = 1
2vesc . Find h

E =
1

2
mv2

0 +

(

−G
Mm

R

)

=
1

2
m(v2

0 − v2
esc)

E = −G
Mm

R + h
= −G

Mm

R

R

R + h
= −1

2
mv2

esc

R

R + h

v2
esc

R

R + h
= v2

esc − v2
0 =

3

4
v2

esc

R

R + h
=

3

4
, 1 +

h

R
=

4

3
, h = R/3

vesc = c ≃ 3 · 105 km/s - ”Black Hole”. Radius of a Black Hole:

RB =
2GM

c2

For Sun:

RB ≈ 9 km
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E. Advanced: Deviations from Kepler’s and Newton’s laws

in class

-0.5 0.5

-0.5

0.5

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3

-0.3

-0.2

-0.1

0.1

0.2

0.3

(NOTE: Lecture on fluids is in a separate file 111−fluids.pdf)
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XXI. OSCILLATIONS

A. Introduction: Math

1. sin(x) , cos(x) for small x

sin x ≃ x (171)

error is about −x3/6 and can be neglected for x ≪ 1 [we will need this for a pendulum]

cos x ≃ 1 − x2

2
(172)

error is tiny for small x, about x4/24 .

2. Differential equation ẍ + x = 0

The equation

ẍ(t) + x(t) = 0 (173)

has a general solution

x(t) = B cos t + C sin t

with arbitrary constants B,C. Can be checked by direct verification (note that ẍ = −x).

The values of B,C are determined by initial conditions x(0) and ẋ(0). Alternatively, one

can combine sin and cos:

x(t) = A cos (t + φ)
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with two constants A =
√

B2 + C2, and φ.

The equation

ẍ(t) + ω2x(t) = 0 (174)

is reduced to the above by replacing t with ωt. Thus,

x(t) = B cos(ωt) + C sin(ωt) (175)

with

B = x(0) , C = ẋ(0)/ω (176)

Or,

x(t) = A cos (ωt + φ) , A =
√

B2 + C2 (177)

with A known as the amplitude and φ the initial phase.

B. Spring pendulum

Hook’s law:

F = −kx (178)

and 2nd Newton’s law

F = mẍ (179)

give eq. (174) with

ω =

√

k

m
(180)

(in radians per second). The oscillation frequency

f = ω/2π (181)
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with units 1/s, or Hz. Period of oscillations

T =
1

f
=

2π

ω
= 2π

√

m

k
(182)

1. Energy

Kinetic:

K(t) =
1

2
m [ẋ(t)]2

Potential:

U(t) =
1

2
kx(t)2

Total:

E = K + U = const

C. Simple pendulum

Restoring force:

F = −mg sin θ ≃ −mgθ

Tangential acceleration:

a = Lθ̈

Thus

θ̈ +
g

L
θ = 0 (183)

exactly like eq. (174). Thus, the same solution with x → θ and

ω2 =
g

L
(184)

or

T =
2π

ω
= 2π

√

L

g
(185)
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D. Physical pendulum

Rotational 2d law:

Iα ≡ Iθ̈ = τ

If l - distance from CM:

τ = −mgl sin θ ≈ −mglθ

for small amplitudes.

Thus,

θ̈ + θ
mgl

I
= 0 (186)

which is the same differential equation as before with x(t) → θ(t). Thus, the same

trigonometric solution with

ω2 =
mgl

I
, T = 2π

√

I

mgl
(187)

Example: uniform rod of length L, pivoted at a distance l from the center.

Solution: from the rotational inertia of a rod about the CM, I0 = 1

12
ML2 and the parallel

axis theorem

I = I0 + Ml2 = M
(

L2/12 + l2
)

Thus,

T = 2π

√

I

Mgl
= 2π

√

L2/12 + l2

gl

120
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FIG. 36: Physical pendulum of mass M and length L making angle θ with vertical. Forces: M~g

(red), with torque τ = −Mgl sin θ. Right: period of small oscillations T for L = 1m as a function

of the off-center distance l, with a minimum at l ≈ 29 cm; dashed line corresponds to the pivot

outside of the rod (on a massless extension).

E. Torsional pendulum

Consider

τ = −κθ

which is a torsional ”Hook’s law”. Then, from rotational 2d law:

Iα ≡ Iθ̈ = τ

and

θ̈ + θ
κ

I
= 0 (188)

Thus,

ω2 =
κ

I
, T = 2π

√

I

κ
(189)

F. Why are small oscillations so universal?

in class
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G. Resonance

Add external driving to a spring pendulum:

F = −kx + F0 cos (ωdt)

Then

mẍ + kx = F0 cos (ωdt) (190)

Look for a solution

x(t) = A cos (ωdt)

where the amplitude A has to be found. Using

ẍ(t) = −ω2

dx(t)

one obtains

A
(

−mω2

d + k
)

= F0

or, with ω0 =
√

k/m, the natural frequency

|A| =
F0/m

|ω2
0 − ω2

d|
(191)

Note INFINITY when ωd = ω0 . This is the resonance!

0.5 1 1.5 2 2.5 3
reduced frequency

10

20

30

40

scaled amplitude

FIG. 37: Resonance. When the driving frequency ωd is close to the natural frequency ω =
√

k/m

there is an enormous increase in the amplitude.
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